Case Study: Modeling the Bundaberg Floods

Sudesh Mudaliar, VP Asia Pacific Anthony Kuch, VP North America

Bundaberg Case Study

- Burnett River Flood Events
- Flood Damage Impacts
- Surveying & LiDAR
- Current 2D Modelling & Applications
- Disaster Management Modelling

- Bundaberg Regional Council
- GHD
- Bureau of Meteorology
- ROAMES

Bundaberg Region

Population: 98,000

Projected 2031: 130,000

Area: 6,500 km²

Asset Value: \$2.09 Billion

Annual Budget: \$206M

River Systems

- Significant number of sub basin outlets
 - Burnett River
 - Kolan River
 - Elliot River
 - Isis River
 - Gregory River
 - Burrum River
 - Baffle Creek

Historical Flood Events

Burnett R at Bundaberg Highest Annual Flood Peaks

- <u>1890</u>
- 1893
- 1942
- 2010
- **2013**

Burnett River

- Weeks of widespread rain on the Burnett catchment (33,248 km²)
- December 29 2010, peaked at 7.92 m, largest since 1942
- Region was disaster declared, emergency crews activated
- 13th Jan 2011 the flood returned

- 6 Tornadoes touched down on the coast
- By evening, torrential rain falling on the Burnett River catchment
- Flood Emergency Alerts Issued for Kolan River & Baffle Creek
- 1m Storm Surge predicted
- Ex- Tropical Cyclone Oswald tracked inland of Bundaberg

Commonwealth of Australia 2013, Australian Bureau of Meteorology

ID code: IGMapAWAPDailyRain

Issued: 26/02/2013

New Meteorological Records

- Burnett Catchment Rainfall Average of 206.8 millimetres for 27 January exceeded the previous record (123.6 millimetres) by nearly 70 per cent!!
- Rainfall Totals Highest records set for 2-, 3- and 4-day timescales by large margins
- Extreme daily rainfall across the catchment
 - Walla TM 480mm (500yr rain event)
 - Mt Rawdon 549mm
 - Bundaberg AP 252mm
- Gold Coast Hinterland >700mm daily rainfall!

- Burnett River Bundaberg
 - 5.5m @ 6:30am
 - 7.6m @ 4:00pm
 - BoM advised 8.5m overnight with higher peak expected
- Commenced Voluntary Mass Evacuation of North & East Bundaberg
- Swift Water Rescue operating

- 4:45am Burnett River exceeded 8.5m (>7m is serious) and rising!
- Mandatory evacuations of North Bundaberg
- Largest in QLD's history...
- 4 ADF blackhawks,4 Careflight, 2 AGL Rescue and 1 SLSQ helicopters
- Conservatively 5,500 in Nth Bundaberg, over 7,000 in the greater area
- At the peak approx 1,400 at evacuation centres

 Burnett River peaks at 9.53m at 3:15pm (0.5% AEP event 9.6m)

Relocation due to Buoyancy

Flood Surveying

- Can't Manage what you don't Measure
- Opportunity to capture data:
 - Flood Model Calibration
 - Event Prediction
 - Disaster Management
 - Town Planning Controls

LiDAR Coverage

Field	Description
Spatial Accuracy (Hz) metres	0.3m @ 67 % CI
Spatial Accuracy (Vt) metres	0.15m @ 67 % CI 0.1m @ 67 % CI
Average Point Separation	1-4 pnt/m^2
Data Tile size (km²)	1 - 4 km ²

LiDAR Coverage

- Over 65,000km2 across QLD
- Data is classified:
 - Ground (XYZ Ascii, Grid)
 - Water
 - Bare Earth
 - Above Ground
 - Classified LAS (Buildings etc)

Roughness Map – Nested 2D Model

Bundaberg Regional Council Job No North Bundaberg Revision Date

Revision A Date 09 Feb 20

Nested Model Extents and Roughness Map North Bundaberg Figure

OUR COASTAL SPIRIT

2D Modelling Importance

- Represent Complex flood behaviour up to PMF events:
 - Breakouts, bypasses and backwaters important for overtopping
- Flow characteristics such as level, depth, velocity, hazard and *shear stress*. 1D fails to distinguish spatial variation
- High-quality spatial datasets

2D Modelling & Scour

- Scour is the loss of soil by erosion due to water flow.
- General scour is the aggradation or degradation of sediment material not related to the presence of local flow obstacles.
- Local Scour is a term frequently used to describe the scour around obstacles that results from increased local flow velocities (flow acceleration). It includes pier scour, abutment scour, and contraction scour.

Shear Stress - Flow force per unit ground area

Local 2D Hydraulic Model:

Velocity Vectors

&

Shear Stress Map

Structural Damage to Footings

Shallower flows (the flow field changes; turbulence structures weaken)

M

Guideline for Improved Dwelling Resilience to Flood Induced Scour

Scour Risk Factor								
Foundation Condition Risk (from Table 4-2)	Flood Velocity Rating (From Table 5-1) m/s							
	1	2	3	4	5			
	less than 0.3	0.3 to less than 0.5	0.5 to less than 1.0	1.0 to less than 1.5	1.5 to less than 2.25			
Low	NIL	LOW	LOW	MED	HIGH			
Mod S	LOW	MED	MED	HIGH	HIGH			
Mod C	LOW	MED	MED	HIGH	HIGH			
High	MED	MED	HIGH	EXTREME	EXTREME			

Scour Risk Factor	Slab Details						
	D (mm)	d (mm)	Slab Reinforcement	Edge Beam	Cut Off Wall	Slab Joints	
NIL	N/A	N/A	N/A	N/A	N/A	N/A	
LOW	1200	100	SL72min	Yes		Type & locations to Engineer's detail	
MED	1500	100	SL72min	Yes		Type & locations to Engineer's detail	
HIGH	1800	100	SL72min		YES	Type & locations to Engineer's detail	
EXTREME	2100	100	SL72min	-	YES	Type & locations to Engineer's detail	

Typical details pertaining to the cut off walls, edge beams and post / stump trimming details are indicated

Figure 1.0 Typical Section

Figure 3.0 Typical Edge Beam Detail

Figure 4.0 Typical Cut Off Wall Detail

OUR COUNTRY SPIRIT

Model Outputs

- River flows, flood levels, river velocities and hazard indices for defined flood events to PMF
- Map the subject areas:
 - Urban areas flood level contour (0.1 m)
 - Non urban areas flood level contour (0.25 m)
 - Hazard, Depth, Velocity, Time to Peak,

Emergency Management Maps

- Assessment of evacuation routes, population-at-risk investigations, time-of-inundation and duration-ofinundation, and flood damages estimation.
- 2D Model generates a series of **flood surfaces** for a *range* of flow rates or *Gauge Heights*

January, 2013 Event (Calibrated Flood Model vs Actual) Predicted: 9.49m AHD 9.53m AHD Actual: Bundaberg Flood Gauge

Key Learnings

- Model the full range of events, don't just consider planning instruments
- Where possible undertake 2D Modelling on entire catchment, especially where rural residential exists.
- Understand the relationship between flood levels and river gauges, especially for population density;
- Ensure the **spatial data** is **key deliverable** of any flood study;
- Undertake Floor Level Surveys for residential dwellings it saves lives
- Incremental flood maps tied to river gauges (not Design Events) are essential during emergencies

