Disaster Analysis using xpswmm: *Some modelling tips*

XJ

Dr. Ashis Dey Principal | Water Engineering

Sudesh Mudaliar VP | Asia Pacific

Solutions

Flood – the most devastation disaster

Flood/Tsunami is one of the worst disaster in Japan and around the world. We still remember –

- Boxing Day Tsunami in Indian ocean 2004
 - Deaths 230,000+ (14 countries)
 - Waves up to 30 meters
- East Japan Tsunami 2011
 - Deaths: 15,828 (missing 3,760)
 - Buildings destroyed: 125,000
- Brisbane Flooding in 2011
 - Deaths: 35 (missing 9)
 - Damages: A\$30 billion

Brisbane Flood (2011)

Source: www.abc.net.au

Japan Tsunami (2011)

Source: www.abc.net.au

DTM Quality & Basic Decision

- DTM Quality very important
 - Resolution of topography data
- River in 1D or 2D ?
 - Depends on river width and cell size
 - DTM quality to represent the river xsection
- Cell Size Selection
 - Small enough to meet hydraulic objectives
 - Large enough to minimise run-times
 - Coarser than DTM

Influence of Cell Size

Halving the cell size increases run-time by a factor of eight (8) – keep this in mind!

Multi - Grids

- Multi Grid option may necessary
 <u>For example</u>
 - 2m in Urban Area
 - 5m in River
 - 10m in Undeveloped Floodplain

2D Theory Inside the Black Box

X) solutions

The Equations: Momentum Equation

Important Terms: Bed Resistance

- Manning's Roughness (n)
- Often it is the most dominant term
- When compared with 1D, 2D n-value maybe:

0.4m superelevation across the river banks at bend (20 m deep & 4 m/s)

Important Terms: Inertia

- Very important where velocity
 - Speeds up or slows down
 - Changes direction
- Essential at structures and bends

Important Terms: Viscosity/Turbulence

- Important where bed resistance term does not dominate and a rapid changes in velocity occur – usually:
 - Where Manning's n values are low and/or in deep water zone
 - And where there is Flow constrictions
- Smagorinsky formula is preferred (default)
 - (Varies coefficient based on velocity gradient)
- Some 2D schemes omit this term

Important Terms: Additional Energy Loss

- Energy dissipated as heat due to changes in velocity magnitude and/or direction
- Pronounced at
 - Bends
 - Flow constrictions (structures)
 - Basement floors
 - Subway stations
 - Bridge piers
 - 3D effects
 - Expansion losses at Vena Contracta
- Represented as "Form loss" coefficient
 - Proportion of dynamic head (V²/2g) lost
 - Usually it would be a calibration parameter

Layered Blockage

1D Manhole & 2D Linking

Link to Invert: Culvert

1D Culvert & 2D Linking

1D River & 2D Linking

- Create 1d/2d interface line along river banks
- Connect 1d nodal point to 1d/2d interface line

Modelling Buildings?

Modelling Buildings Block Cells Out

	9%
**************************************	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
127	· · · · · · · · · · · · · · · · · · ·
┟┰╧╱╀╢╾╾╾╶╶╶	
·	· · · · · · · · · · · · · · · · · · ·
	and the second
///	· · · · · · · · · · · · · · · · · · ·
///	· · · · · · · · · · · · · · · · · · ·
	***** *****************************
	~~~~
1 9	> >
≁-≁- <u>↓-↓-↓</u> -↓-↓-↓	₩ <mark>₩₿₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽</mark> ₽₽₽₽₽₽₽₽₽₽
	<mark>▶▶▶₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽</mark>
<u> </u>	<u> </u>

Modelling Building Walls Blocked/Open Upstream

Modelling Building Roughened Up (n = 0.3)

· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	> > 	• • • • • • • • • • • • • • • • • • •
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* <i>* * * * * * * * * * * * * * * * * * </i>	<b></b>	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	·		· · · · · · · · · · · · ·
.122m	0.38m/s	· · · · · · · · · · · · · · · · · · ·	
* <b>* * * * * * * * * * *</b> * *		· · · · · · · · · · · · · · · · · · ·	
▶>>>>>>>>> ->	~~~~~~~~~~~		
►+++++++++	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·	
►- <b>₩-₩-₩-₩-₩-₩-₩</b> ~₩~₩~₩~₩	1.41m/s	<b>&gt; &gt; </b>	<u> </u>
• -• -• -• -• -• -• -• -• -•	····	<del>* * * * * * * * * * * * * * * * * * * </del>	<u> </u>

# Modelling Building Porous (Blockage = 90%)

Energy Loss (0.1*V²/2g)

► - ► - ► - ► - ► - ► - ► - ► - ► - ► -	<u> </u>	*****	*********	• • • • • • • • • • • • • • • • • • •
· · · · · · · · · · · · · · · · · · ·	93%	****	****	
·	× / <del>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</del>		<b>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </b>	
, , , , , , , , , , , , , , , , , , ,	1 sector		<u>+</u>	
	· /_ <del>BBBBBBBBBBBBBBBBBB</del>	▶ ▶ <i>▶ , , , , , , , , , , , , , , , , ,</i>		
<b>U.TO</b> / <b>W</b>	······································	► ► ► · · · · · · · · · · · · · · · · ·		
· * * * * * * * * * * * * * * * * * * *		• • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	*_*_*_*	
	178m7c	<del>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</del>	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•••••	• • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • •	<u> </u>	<u> </u>	

 Proper Breaking condition setting is essential

Levee/Dam/Fence Break

ine Type Diffin	🥥 Thid	k Width	10.	14 6 S		
rigger By:	120/23/24/2023	rzie Gru			200	
Start Time 0	ho	urs			200	
Water Level At	Trigger Point	0 at	Value	42.85	1-1-1-1	
Water Level Dif	ference betwee	en Trigger				
and Trigger		at Value	0.0		2.25	
	noneging					
Depth 0.0	18.9					
Difference in D	enth 0.0				222200	
levation Modifica Lower where cu Raise where cu	tion urrent elevation rrent elevation	is are highe s are lower	r			
Elevation Modifica Lower where cu Raise where cu Change all elev Final Perimeter Ele	tion urrent elevation ations evation	is are highe s are lower	r			
Elevation Modifica Lower where co Raise where co Change all elev inal Perimeter Ele Constant Eleva	tion urrent elevations ations evation tion 41.5	is are highe s are lower	r			
Elevation Modifica Lower where cu Raise where cu Change all elev inal Perimeter Ele Constant Eleva Variable	tion urrent elevations ations evation tion 41.5	is are highe s are lower	r			
Elevation Modifica Lower where co Raise where cu Change all elev inal Perimeter Ele Constant Eleva Variable	tion urrent elevations ations evation tion 41.5	s are highe s are lower	r			
Elevation Modifica Lower where co Raise where co Change all elev Change all elev Constant Eleva Variable Xariable	tion urrent elevations ations evation tion 41.5 Y 6178078.746	s are highe s are lower Z(DTM) 41.417	r			
Elevation Modifica Lower where cu Raise where cu Change all elev inal Perimeter Ele Constant Eleva Variable X 1 293293.566 2 293305.965	tion urrent elevations ations evation tion 41.5 Y 6178078.746 6178075.938	s are highe s are lower Z(DTM) 41.417 41.460	r Z			
Elevation Modifica Lower where co Raise where co Change all elev Change all elev Constant Eleva Variable Variable X 1 293293.566 2 293305.965	tion urrent elevations ations evation tion 41.5 Y 6178078.746 6178075.938 evations Elevation	s are highe s are lower Z(DTM) 41.417 41.460 0.0 0.0	r Z			

XP2D Application 100s of Project Done

XJ solutions

Case Study: NSW, Australia

27

Fully developed Urban Area

Total number of Node/Pit –284 Total number of Sub Catchment –285 (130 ha) Total 2D Cell Count – 379805 2D Cell size – 3m X 3m Max overland velocity – 5m/s Storm Events 5yr, 20yr, 50yr, 100yr and PMP

Case Study: QLD, Australia

Rural Mining Area

Node –Total 300 (active) Link – Culvert: 10, Channels: 202 Node with User Inflow– Total 95 2D Cell –Total 907481 (Cell size 20m) 2D Head Boundary – 1 (free outfall) 2D Flow Boundary - None

(Existing Condition for Q1000, 18hr event)

Case Study: Sendai, Japan

Costal Area – Tsunami Model

(East Japan Tsunami 2011)

